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Abstract 

A procedure is described which determines the best 
rotations to superimpose M rigid n-point objects, 
such that the weighted sum of mutual squared devi- 
ations is minimized. Apart from providing an easy 
and rigorous way for the least-squares superposition 
of any number of similar structures, this procedure 
can also be used to obtain a set of mean atomic 
positions for a substructural fragment that is con- 
tained in different structures with slight deviations 
from its mean geometry or to symmetrize distorted 
structures. 

where v m" is a weight matrix that specifically weights 
the matching of molecule m with molecule n. In the 
following section we set v 'nn equal to unity to simplify 
the notation. However, no additional difficulties arise 
for non-equal v m". The modification of the formulae 
is straightforward. 

For the case of two molecules (M = 2), (2) reduces 
to (1). For the sake of simplifying the notation, we 
assume that all sets (x~) are centered at the origin, i.e. 

wtx?=0 ,  m = l , . . . , M .  (3) 
l 

1. Introduction 

The problem of optimally superimposing two given 
sets of atomic coordinates (xt) and (yt) such that the 
weighted quadratic deviation of the rotated set (Oxt) 
from (Yl) 

E=½Y. wt(Oxl-yt )  2 (1) 
i 

is minimized (McLachlan, 1972, 1982) can be solved 
analytically by its reduction to the diagonalization of 
a 3 x 3 symmetric matrix (Kabsch, 1976). 

However, there are often situations, particularly in 
computer-aided drug design, where more than just 
two molecules need to be superimposed. In general, 
such tasks have been handled by sequences of pair- 
wise superpositions without overall optimization. 
Since the number of pairs grows quadratically with 
the number of molecules, such a procedure may be 
quite tedious without leading to a truly optimized 
result. Furthermore, when matching all molecules 
onto a single target molecule, the quality of the result 
may depend strongly on the arbitrary choice of the 
target. 

We outline a procedure for the simultaneous 
optimization of the superposition of M rigid 
molecules given by their coordinate sets (x~), m = 
1 , . . . ,  M. The criterion for an optimal match is a 
minimal value of the sum 

M 

E : 1 Z l)mn Z w i ( O m x ?  . . . .  2 - v  xt)  , (2) 
n < m  I 
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2. Solution by linearization 

In the first step we perform M -  1 pairwise matches 
onto a single target molecule. This molecule is selec- 
ted from the whole set by its largest deviation from 
linearity. To obtain a measure for this deviation, we 
start from the second-moment tensor 

s mrl~l ~ E m A 1,1,1 wtx, x t ,  (4) 
l 

where ~ denotes the transpose of the column vector 
x. The characteristic polynomial of this tensor 
describes the extensions of the molecule, i.e. a vanish- 
ing constant coefficient occurs for planar molecules, 
a vanishing linear coefficient for linear molecules and 
a vanishing quadratic coefficient for point objects. 
Thus the molecule with the largest linear coefficient 
is selected as target molecule m,. 

The first step then minimizes the sum (1) for each 
pair (m, m,). After this step the sum (2) has in general 
not reached its minimum value. 

The second step towards minimizing (2) consists 
of applying an additional orthogonal transformation 
O m to each of the first M - 1 molecules, keeping the 
last molecule M fixed in space with OM = ~ (identity 
matrix). Equation (2) then reads 

E=½ E Y~wI(Onx?--Omx?) 2=minimum" (5) 
n < m  i 

Since the traces of the second moments (4) remain 
unchanged under the orthogonal transformations 0 %  
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we can rewrite (5) as 

Tr ( o m s m n o  n) = maximum, 
n ~ m  

(6) 

where we define the mixed moment tensors 

smn  ~ X WlXrfft~ 
1 

in accordance with (4). 
We proceed by writing the orthogonal matrices (o cz ) 

O=~+sin~o c~ 0 
\ -cy  cx 

[ c 2 - 1 CxCy 

+ ( i - c o s  ~p)| / cxcy c 2 - 1  
t 
\ cxc2 cycz 

c c) 
cyc~ 
2 C z - 1  

in terms of the rotation angle ¢ and the axis of rotation 
given by its unit vector c = (cx, cy, Cz). Of course, all 
these quantities carry the label m of the molecule to 
be rotated. 

The first step of pairwise matching generally 
ensures that the remaining rotations O m involve only 
small rotation angles m such that (6) may be solved 
successfully by linearization. The representation (8) 
facilitates this procedure. The rotations are 
equivalently characterized by the vectors e m, the com- 
ponents of which are given by 

E7 : m m i = x ,  (9)  ~P c i , y, z, 

and are expected to be small compared to one. 
Solution of the extremum problem (6) in this 

linearized form is now straightforward, if somewhat 
tedious. For a concise representation, we introduce 
the 3 x 3 matrices Ji, K~ and Ui defined by 

= I - s i g  (P), 

(1,)jk [o, 
if (i, j, k) is a permutation P 
of (x, y, t) 
otherwise, 

(K,)j,k---I(J,)jd, 

1, f o r i = j = k ,  

(Ui)jk = 0, otherwise. 

Insertion of (11) into (6) and differentiation with 
respect to e~' yields the set of linear normal equations 

{(e~'-  e~,) Tr [ (~-  Uk)S  toni 
I1 

-½ Y'. (ek~,-- e~,) Tr ( Kk,,smn)} 
k' 

(7) = ~ T r ( ~ s m n ) ,  m = l , . . . , M - l , k = x , y , z ,  
n 

(12) 

eJ ~ -  0. 

Here again k, k' and k" are all different. 
Solution of the set of linear equations (12) yields 

m the M - 1  triples (em, ey,m e z ) , m = l , . . . , M - 1 ,  
which determine the rotation matrices 0 m to order 
8 2 through (11). To ensure that the rotation matrices 
remain strictly orthogonal, they are taken in the form 

(8) (8), where the required parameter values tPm and c m 
are obtained from e m through 

m2 ~ m = ( e m 2 . + e y  -I-ezra2) 1/2, 
(13) cm=em/~ m, i=x,y,z. 

(10) 

The orthogonal transformations then read, to order 
O(e2), 

om = ~+E e~Jk +½ Z e~,e~,,Kk 
k k 

-½E ~'~(~-u,,)+o(~3), (11) 
k 

where k, k' and k" are all different. 

3. Computational aspects 

As in the pairwise match, the only step which 
increases with the size of the coordinate sets is the 
evaluation of the mixed moments. However, because 
there are M ( M - 1 ) / 2  such matrices the computa- 
tional effort for this step grows quadratically with the 
number of involved molecules. The remaining calcu- 
lations are manipulations of 3 x 3 matrices and the 
solution of 3 ( M -  1) linear equations (12). 

Our procedure has been implemented as a Fortran 
77 subroutine package on a VAX-11/780. It typically 
takes about 0-4, 0-5 and 1-3 s of CPU time for the 
superposition of ten molecules using respectively 8, 
16 and 150 reference atoms in each molecule. On the 
other hand, superposition of 20 molecules with eight 
atoms each took 1.6 s. 

Furthermore, in all practical applications one 
single iteration has proved sufficient to achieve align- 
ment accuracy below one tenth of a degree. 

The choice of the most non-linear molecule as a 
target for the first step generally leads to a good initial 
alignment, resulting in subsequent rotations by only 
a few degrees. The situation becomes considerably 
less favorable for ill chosen (e.g. nearly linear) target 
molecules. 

Of course, it is possible to construct pathological 
examples for which the first step would generate 
orientations that still necessitate large rotations. "In 
such cases linearization of the problem may not be 
justified. An example of this sort would be a set of 
four-point objects which contains two tetrahedra that 
differ only by interchange of the labels of two vertices. 
However, while such cases may still be of mathemati- 
cal interest, they are of little practical relevance. 
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4. Finding averaged coordinates 

A frequent problem in computer-assisted molecular 
modelling is that of obtaining a weighted average 
structure for a substructural fragment contained in a 
number of different molecular structures determined 
by X-ray diffraction techniques. 

There are several ways to obtain such averaged 
fragment structures. A particularly convenient one is 
to average atomic positions in a set of appropriately 
superimposed fragment structures. This section 
demonstrates that our superposition procedure pro- 
vides a basis for obtaining weighted average struc- 
tures. 

We require that a weighted average structure (x~) 
obtained from M molecules (x?)  be an average taken 
after suitable reorientation of the molecules. The 
reoriented molecules have the coordinates 

y?  = O " x ? .  (14) 

The weighted average structure is given by 

x°=EumY~ ', E u m = l .  (15) 
m m 

The requirement that the average structure be optimal 
can be formulated as 

E w,E u~(y~"-x°)2 = Y. w,E um(y?2--X °2) 
l m I m 

= minimum, (16) 

where the parameters to be varied are the orientation 
matrices O ~. Again, y?2 is unchanged if the rotation 
matrix O "  is varied; hence (16) is equivalent to 

E wt x°2 = maximum. (17) 
l 

Inserting the definition (15) of x °, we get 

umu" Y~ wzy?y? = maximum. (18) 
rrl, rl / 

The term with m = n is again invariant. Thus, after 
inserting (14), we may equivalently write 

M 

~" umu n T r ( O ~ S ~ " ( ) n ) = m a x i m u m .  (19) 
m : ~ n  

This condition is exactly equivalent to (6) if we take 
instead of constant pairing weights v m" [see (2)] the 
values 

v""  = umu ". (20) 

Therefore, in order to obtain an optimized structure 
as a weighted average of M given stuctures, one has 
to perform the superposition of the M molecules as 
described in § 2, taking as pairing weights the values 
(20). The average coordinates (x °) are then obtained 
through (15) from the matched coordinates. 

This procedure can also be applied to symmetrize 
a structure which is expected to show a certain sym- 
metry, but for which the actual coordinates deviate 
slightly from the required symmetry. The symmetrized 
structure is easily obtained as the average structure 
of all possible symmetry-related orientations super- 
imposed with equal weight factors (v ~"=  constant). 
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Abstract 

Sayre's equation is fundamental to a large part of classical 
direct methods. In this paper, it is shown that this equation 
can be derived via an integral bound to the entropy integral. 
While positivity is implicit in this derivation, atomicity is 
not used. 

Introduction 

Sayre's equation and similar triplet-based forms have 
formed the basis for the highly successful direct methods 
used in small-molecule crystallography (Sayre, 1952; Karle 
& Hauptmann, 1950). The maximum-entropy method has 
the potential to extend these methods to larger and more 


